从 http.Request.Body
或 http.Response.Body
中读取数据方法或许很多,标准库中大多数使用 ioutil.ReadAll
方法一次读取所有数据,如果是 json
格式的数据还可以使用 json.NewDecoder
从 io.Reader
创建一个解析器,假使使用 pprof
来分析程序总是会发现 bytes.makeSlice
分配了大量内存,且总是排行第一,今天就这个问题来说一下如何高效优雅的读取 http
中的数据。
背景介绍
我们有许多 api
服务,全部采用 json
数据格式,请求体就是整个 json
字符串,当一个请求到服务端会经过一些业务处理,然后再请求后面更多的服务,所有的服务之间都用 http
协议来通信(啊, 为啥不用 RPC
,因为所有的服务都会对第三方开放,http
+ json
更好对接),大多数请求数据大小在 1K4K,响应的数据在 1K8K,早期所有的服务都使用 ioutil.ReadAll
来读取数据,随着流量增加使用 pprof
来分析发现 bytes.makeSlice
总是排在第一,并且占用了整个程序 1/10
的内存分配,我决定针对这个问题进行优化,下面是整个优化过程的记录。
pprof 分析
这里使用 https://github.com/thinkeridea/go-extend/blob/master/exnet/exhttp/expprof/pprof.go 中的 API
来实现生产环境的 /debug/pprof
监测接口,没有使用标准库的 net/http/pprof
包因为会自动注册路由,且长期开放 API
,这个包可以设定 API
是否开放,并在规定时间后自动关闭接口,避免存在工具嗅探。
服务部署上线稳定后(大约过了一天半),通过 curl
下载 allocs
数据,然后使用下面的命令查看分析。
1 | $ go tool pprof allocs |
从结果中可以看出采集期间一共分配了 1358.61GB
top 10
占用了 44.50%
其中 bytes.makeSlice
占了接近 1/10
,那么看看都是谁在调用 bytes.makeSlice
吧。
1 | (pprof) web bytes.makeSlice |
从上图可以看出调用 bytes.makeSlice
的最终方法是 ioutil.ReadAll
, (受篇幅影响就没有截取 ioutil.ReadAll
上面的方法了),而 90% 都是 ioutil.ReadAll
读取 http
数据调用,找到地方先别急想优化方案,先看看为啥 ioutil.ReadAll
会导致这么多内存分配。
1 | func readAll(r io.Reader, capacity int64) (b []byte, err error) { |
以上是标准库 ioutil.ReadAll
的代码,每次会创建一个 var buf bytes.Buffer
并且初始化 buf.Grow(int(capacity))
的大小为 bytes.MinRead
, 这个值呢就是 512
,按这个 buffer
的大小读取一次数据需要分配 2~16 次内存,天啊简直不能忍,我自己创建一个 buffer
好不好。
看一下火焰图🔥吧,其中红框标记的就是 ioutil.ReadAll
的部分,颜色比较鲜艳。
优化读取方法
自己创建足够大的 buffer
减少因为容量不够导致的多次扩容问题。
1 | buffer := bytes.NewBuffer(make([]byte, 4096)) |
恩恩这样应该差不多了,为啥是初始化 4096
的大小,这是个均值,即使比 4096
大基本也就多分配一次内存即可,而且大多数数据都是比 4096
小的。
但是这样真的就算好了吗,当然不能这样,这个 buffer
个每请求都要创建一次,是不是应该考虑一下复用呢,使用 sync.Pool
建立一个缓冲池效果就更好了。
以下是优化读取请求的简化代码:
1 | package adapter |
使用 sync.Pool
的方式是不是有点怪,主要是 defer
和 api.pool.Put(buffer);buffer = nil
这里解释一下,为了提高 buufer
的复用率会在不使用时尽快把 buffer
放回到缓冲池中,defer
之所以会判断 buffer != nil
主要是在业务逻辑出现错误时,但是 buffer
还没有放回缓冲池时把 buffer
放回到缓冲池,因为在每个错误处理之后都写 api.pool.Put(buffer)
不是一个好的方法,而且容易忘记,但是如果在确定不再使用时 api.pool.Put(buffer);buffer = nil
就可以尽早把 buffer
放回到缓冲池中,提高复用率,减少新建 buffer
。
这样就好了吗,别急,之前说服务里面还会构建请求,看看构建请求如何优化吧。
1 | package adapter |
这个示例和之前差不多,只是不仅用来读取 http.Response.Body
还用来创建一个 jsoniter.NewEncoder
用来把请求压缩成 json
字符串,并且作为 http.NewRequest
的 body
参数, 如果直接用 jsoniter.Marshal
同样会创建很多次内存,jsoniter
也使用 buffer
做为缓冲区,并且默认大小为 512
, 代码如下:
1 | func (cfg Config) Froze() API { |
而且序列化之后会进行一次数据拷贝:
1 | func (cfg *frozenConfig) Marshal(v interface{}) ([]byte, error) { |
既然要用 buffer
那就一起吧^_^,这样可以减少多次内存分配,下读取 http.Response.Body
之前一定要记得 buffer.Reset()
, 这样基本就已经完成了 http.Request.Body
和 http.Response.Body
的数据读取优化了,具体效果等上线跑一段时间稳定之后来查看吧。
效果分析
上线跑了一天,来看看效果吧
1 | $ go tool pprof allocs2 |
哇塞 bytes.makeSlice
终于从前十中消失了,真的太棒了,还是看看 bytes.makeSlice
的其它调用情况吧。
1 | (pprof) web bytes.makeSlice |
从图中可以发现 bytes.makeSlice
的分配已经很小了, 且大多数是 http.Request.ParseForm
读取 http.Request.Body
使用 ioutil.ReadAll
原因,这次优化的效果非常的好。
看一下更直观的火焰图🔥吧,和优化前对比一下很明显 ioutil.ReadAll
看不到了
优化期间遇到的问题
比较惭愧在优化的过程出现了一个过失,导致生产环境2分钟故障,通过自动部署立即回滚才得以快速恢复,之后分析代码解决之后上线才完美优化,下面总结一下出现的问题吧。
在构建 http
请求时我分了两个部分优化,序列化 json
和读取 http.Response.Body
数据,保持一个观点就是尽早把 buffer
放回到缓冲池,因为 http.DefaultClient.Do(req)
是网络请求会相对耗时,在这个之前我把 buffer
放回到缓冲池中,之后读取 http.Response.Body
时在重新获取一个 buffer
,大概代码如下:
1 | package adapter |
上线之后马上发生了错误 http: ContentLength=2090 with Body length 0
发送请求的时候从 buffer
读取数据发现数据不见了或者数据不够了,我去这是什么鬼,马上回滚恢复业务,然后分析 http.DefaultClient.Do(req)
和 http.NewRequest
,在调用 http.NewRequest
是并没有从 buffer
读取数据,而只是创建了一个 req.GetBody
之后在 http.DefaultClient.Do
是才读取数据,因为在 http.DefaultClient.Do
之前把 buffer
放回到缓冲池中,其它 goroutine
获取到 buffer
并进行 Reset
就发生了数据争用,当然会导致数据读取不完整了,真实汗颜,对 http.Client
了解太少,争取有空撸一遍源码。
总结
使用合适大小的 buffer
来减少内存分配,sync.Pool
可以帮助复用 buffer
, 一定要自己写这些逻辑,避免使用三方包,三方包即使使用同样的技巧为了避免数据争用,在返回数据时候必然会拷贝一个新的数据返回,就像 jsoniter
虽然使用了 sync.Pool
和 buffer
但是返回数据时还需要拷贝,另外这种通用包并不能给一个非常贴合业务的初始 buffer
大小,过小会导致数据发生拷贝,过大会太过浪费内存。
程序中善用 buffer
和 sync.Pool
可以大大的改善程序的性能,并且这两个组合在一起使用非常的简单,并不会使代码变的复杂。